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1 Introduction

The standard cell library we are creating needs to be integrated with the cadence synthesis tool,
build gates. In order for build gates to correctly synthesize your circuit it needs to know timing and
loading information about the standard cells in the library. You will need to generate simulation
data in order to write your technology library.

We will write the technology file in the file format created by Synopsis. The reason for this is
that the synopsis technology file format is much more readable than the build gates technology file
format. After writing the synopsis style technology file we will translate it to the style build gates
expects by using the translation tool syn2tlf.

1.1 Sample Technology Library

A sample synopsis technology library is included below. Do not let the size of the file scare you.
All the information is straight forward and easy to understand.

library ( StandardCellLibrary ) {

/*=== Library Level Attributes ===*/

/* technology family */
technology( cmos );

/* delay model */
delay_model : generic_cmos;

/* documentation details */
date : "24 June 2004";
comment : "Standard Cell Library";
revision : 00;

/* library units */
voltage_unit : "1V";
current_unit : "1mA";
pulling_resistance_unit : "1kohm";
time_unit : "1ns";
/* represetn capacitance in terms of the standard load unit of an inverter */
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capacitive_load_unit( 0.0288, pf );

/* nominal operating condition */
nom_process : 1.0;
nom_temperature : 25.0;
nom_voltage : 5.0;

/* Delay threshold points */
output_threshold_pct_fall : 30 ;
input_threshold_pct_fall : 70 ;
output_threshold_pct_rise : 70 ;
input_threshold_pct_rise : 30 ;

/* Slew threshold points */
slew_derate_from_library : 1.0;
slew_lower_threshold_pct_fall : 10 ;
slew_upper_threshold_pct_fall : 90 ;
slew_lower_threshold_pct_rise : 10 ;
slew_upper_threshold_pct_rise : 90 ;

/* Cell swapping criteria */
in_place_swap_mode : match_footprint;

/*=== Default Attributes ===*/

/* Fanout */
default_fanout_load : 1.0 ;
default_max_fanout : 20.0 ;

/* Pin Capacitance */
default_inout_pin_cap : 1.0 ;
default_input_pin_cap : 1.0 ;
default_output_pin_cap : 0.0 ;

/* Fall and rise resistance (transition delay per unit load) */
default_inout_pin_fall_res : 0.0 ;
default_output_pin_fall_res : 0.0 ;
default_inout_pin_rise_res : 0.0 ;
default_output_pin_rise_res : 0.0 ;

/* Intrinsic fall and rise (propogation delay) */
default_intrinsic_fall : 1.0 ;
default_intrinsic_rise : 1.0 ;

/* Slope sensitivity factor (to account for input transition) */
default_slope_rise : 0.0 ;
default_slope_fall : 0.0 ;
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/*=== Scaling Factors for delay calculation ===*/

/* process scaling factors */
k_process_pin_cap : 0.0 ;
k_process_intrinsic_fall : 0.0 ;
k_process_intrinsic_rise : 0.0 ;
k_process_hold_fall : 0.0 ;
k_process_hold_rise : 0.0 ;
k_process_setup_fall : 0.0 ;
k_process_setup_rise : 0.0 ;

/* temperature scaling factors */
k_temp_pin_cap : 0.0 ;
k_temp_intrinsic_fall : 0.0 ;
k_temp_intrinsic_rise : 0.0 ;
k_temp_hold_fall : 0.0 ;
k_temp_hold_rise : 0.0 ;
k_temp_setup_fall : 0.0 ;
k_temp_setup_rise : 0.0 ;

/* voltage scaling factors */
k_volt_pin_cap : 0.0 ;
k_volt_intrinsic_fall : 0.0 ;
k_volt_intrinsic_rise : 0.0 ;
k_volt_hold_fall : 0.0 ;
k_volt_hold_rise : 0.0 ;
k_volt_setup_fall : 0.0 ;
k_volt_setup_rise : 0.0 ;

/*=== Cell Definitions ===*/

/* inverter */
cell( INV ) {

/* cell level simple attributes */
area : 86.4;
cell_footprint : "inv";

/* pin groups in the cell */
pin( A ) {
/* pin level simple attributes */
direction : input;
capacitance : 0.25;

} /* pin( A ) */

pin( Out ) {
/* pin level simple attributes */
direction : output;
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function : "!A";

/* timing group within the pin level */
timing() {
/* timing level simple attributes */
related_pin : "A";
intrinsic_rise : 0.135;
intrinsic_fall : 0.142;
rise_resistance : 0.421;
fall_resistance : 0.428;

} /* timing() */

} /* pin( Out ) */

} /* cell( INV ) */

} /* library ( UT_LP_AMI06 ) */

Note: Emacs nicely highlights the syntax in this file if you turn on c-mode. Another note: this
sample technology file wasn’t made for the geometries we are using in class. While the format and
generic parameters in the file will not change, the specific capacitance and timing information will.

The final section of this document explains every section of the technology library file. Because
a few of the sections are harder to generate data for, we will focus on them more exhaustively.
They are the sections you need to customize: the capacitive load unit, the delay threshold points
and the cell function.

1.2 Capacitive Unit Load

The capacitive load unit lets us define all the capacitances in the circuit in terms of the standard
load which is defined as four inverters. Every cell defines its pin capacitance in terms of this load.
If you look at the inverter section of the technology library you will see that the input capacitance
on pin A is 0.25, one quarter of the standard four inverter load.

1.3 Rise and Fall Timing Measurements

The delay threshold point defines the rise and fall percentages for propagation timing measurements
and the slew threshold point defines our rise and fall percentages for resistance timing measure-
ments. Propagation delay is usually measured as the time between a 50% input change and 50%
output change, but in order to avoid negative delay caused by slow changing outputs we will mea-
sure the time between a 30% input change and 70% output change. Propagation delay is measured
when not driving a load. on the other hand, resistance timing is measured while driving a load.
For this measurement, calculate the time between a 10% input change and a 90% output change.
The synthesis tool uses these times along with the capacitance of the standard load to calculate
the rise and fall resistances.

1.4 Cell Function

The cell function contains the logical operation the cell performs. For logic gates such as nand, nor
and inv, this is fairly easy. Defining cell functions for flip-flops and other sequential elements is a
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little trickier. Sequential elements and tristate devices are explained very well at the UofU VLSI
course web page. Go to http://www.cs.utah.edu/classes/cs5710/tutorials/appendixA.htm to read
more about these types of cells.

2 Capacitive Unit Load

Let’s calculate the capacitive load unit for our standard cell library. The input pins of a standard
cell connect to the gate of one or more nmos and/or pmos transistors. An oxide layer insulates the
gate poly layer from the substrate creating a capacitor. Mosis reports process parameter results
from fabrication processes and from these reports we know the value of gate oxide capacitance per
unit area for the AMI ABN process is

Cgox = 1.1ff/u2.

The total capacitance at an input pin is the sum of the areas (W ∗ L) of the transistor gates
multiplied by Cgox.

The inverter input pin, A, is connected to both nmos and pmos transistors with dimensions
W/L = 3.6/1.2 and W/L = 10.8/1.2. The total capacitance equals

CpinA = [(W1 ∗ L1) + (W2 + L2)]Cgox

= [(3.6 ∗ 1.2) + (10.8 ∗ 1.2)] ∗ 1.1 ∗ 10−15

= 0.019 ∗ 10−12.

Calculating the standard capacitive unit load simply involves calculating the input capacitance for
an input pin connected to four inverters.

Cstandardload = [(W1 ∗ L1) + (W2 + L2)]Cgox

= [(14.4 ∗ 1.2) + (43.2 ∗ 1.2)] ∗ 1.1 ∗ 10−15

= 0.076 ∗ 10−12

The normalized capacitance of a single inverter is therefore

CpinA(normalized) = 0.019pf/0.076pf = 0.25.

Remember, when calculating pin capacitances, first determine how many transistors the pin
connects to, second, add up the areas of the transistors, third, multiply by Cgox and fourth, divide
by the capacitive unit load.

Normally output pins do not connect to any transistor gates, so they do not have any capaci-
tance. If for some reason the output pin does connect to the gate of one or more transistors you
need to follow the same steps in determining its capacitance. When does an output pin connect to
a transistor gate? (Hint: think about flip-flops)

3 Rise and Fall Timing Measurements

Rise and fall timing measurements fit into two categories, propagation times and slew rates. The
technology library uses intrinsic rise and fall to record propagation times and it uses rise and fall
resistance to record slew rates. This section describes the post layout simulation environment used
to measure intrinsic rise, intrinsic fall, rise resistance and fall resistance.
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Figure 1: Propagation Rise and Fall Test Setup

3.1 Test Library

The first thing you need to do is create a new library called testLib. It will contain all the
schematics you use for testing your standard cells. Link the library to the AMI12 technology
library. Create two cells, one called inv test for your inverter timing measurements and one
called inv4x in which you need to create an inverter sized four times larger than normal. Make
the widths 3.6 ∗ 4 = 14.4 and 10.8 ∗ 4 = 43.2. Also, remember to change the model types of the
transistors to ami12N and ami12P.

3.2 Propagation Rise and Fall

When characterizing a cell’s propagation delay, use the setup in Figure 1. Choose vpulse and
vdc from NCSU Analog parts. Set the source parameters to the same values you used in the post
layout simulation tutorial.

Notice that there are two inverters in the test setup. They are both instances of your inverter.
The first one is used to simulate a real driving device and should use the schematic cell view. The
second one is the device being tested and should use the analog extracted view. Once again, follow
the same steps you did in the post layout simulation tutorial to create a config cell and use the
analog extracted cell for one of the inverters.

After running your simulation, use the resulting waveforms to calculate the 30-70 rise and fall
times for the input pin A. Write these down, you will need them when you write the technology
library file. If the device under test has more than one input, i.e. a nand gate, then calculate the
propagation rise and fall times separately for each input. For instance, to test B, hold A high and
toggle B. Likewise, to test A hold B high and toggle A. Refer to the sample technology library
file, notice how pin Out has a timing section related to pin A? Each input pin has its own timing
section in the output pin section of the cell definition. If this were a nand gate, the output pin
section would have two timing sections, one related to pin A and one to pin B.
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Operator Description
’ invert previous expression
! invert following expression
ˆ logical XOR
∗ logical AND
& logical AND

space logical AND
+ logical OR
| logical OR
1 signal tied to logic 1
0 signal tied to logic 0

Table 1: Cell Function Operators

3.3 Rise and Fall Resistance

Measure the rise and fall resistances by removing the noLoad output from the device under test
(DUT), wiring the inv4x to the output of the DUT and creating a new output pin on the output
of the DUT called Load. Name the wire in between the DUT and the inv4x output. Run the
simulation again and this time measure the 10-90 rise and fall times of the DUT. Record these for
use in the technology library file. Similarly to the propagation time measurements, each input pin
is timed separately for the resistance measurements.

4 Cell Function

The function attribute in the cell definition section of the technology library file defines the func-
tionality of the cell. The synthesis tool, build gates, uses the function to correctly construct the
operation you code in your verilog. Write the functions for your logical gates using the operators
in Table 1.

A couple examples, the inverter has function : “!A”, a nand gate would have function :
“!(A&B)”.

Describing functionality of sequential cells is more complicated and is described in detail at
http://www.cs.utah.edu/classes/cs5710/tutorials/appendixA.htm.

5 Examining a Technology Library File

5.1 Create the File

You should put your technology file in your standard cell library folder. Navigate to the folder
named stdCellLib and use your favorite text editor to create a file called stdCellLib.lib. By now
you have an example of a technology library file and a good idea of what goes in one. We are going
to write the library portion for your file as well as the inverter section. As a side note, you only
need one file for your entire library. As you create and add more cells to the library, simply add a
new cell definition section for each new cell.

5.2 Write the File

What follows is a pretty exhaustive description of the file.
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Case Sensitivity and Comments - The library file is case sensitive so if you get some funny
errors down the line this may be the cause. The commenting style is similar to c or verilog.
A slash asterisk starts a comment and an asterisk slash ends one. Note: writing your file in
emacs with the c-mode on is a great idea.

/* this is a comment in the library file */

Library Name - It will be appropriate to name the library stdCellLib. Go ahead and enter this
into your cell as

library( stdCellLib ) {
:
:

}.

As you progress through the following steps, fill in appropriate details to the above framework
in order to form a complete technology library file. Note that the details provided create a
general library file, the file has many more commands that could be included to add more
functionality. If you are interested, you can find more out about those by searching out a
synopsis technology library file reference manual.

Library level simple and complex attributes -

• Technology Family - The technology we are following is CMOS and this is specified as
follows

technology(cmos);

If specified, this attribute assignment should be the first one in the library source file.

• Delay Model - We need to specify a delay model for calculation of cell timing details.
The available options are: generic cmos, table lookup, piecewise cmos, cmos2, and dcm
(delay calculation mode). We select generic cmos. This is the next attribute specified
after technology. The table lookup method provides more accurate timing information,
but if you want to use it you are on your own.

delay_model : generic_cmos;

• Documentation Details - These attributes are for library documentation purposes.

date : "date of library creation in any format";
comment : "any single line comment about the library";
revision : revision number in any format;

• Library Units - Sets the units for current, voltage, capacitance, time, etc used in the
library. Capacitance units can be specified in farads or in terms of the standard 4x
inverter load. We will use the latter method and so will specify capacitances in terms of
this standard load.

voltage_unit : "1V";
current_unit : "1mA";
pulling_resistance_unit : "1kohm";
time_unit : "1ns";
capacitive_load_unit(0.076,pf);
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Remember to select the units so that they are consistent with each other. Note that
in the library there is no direct way to specify the resistance unit. When we calculated
rise resistance and fall resistance we specified them in nanoseconds. Well R = t/C and
ns/pf is in the kOhm range. Using a similar approach make sure the other units are
consistent with each other.

• Nominal Operating Condition - The nominal temperature, process and voltage values
under which the library is characterized are specified here.

nom_process : 1.0;
nom_temperature : 25.0;
nom_voltage : 5.0;

Temperature is always in degrees celsius.

• Delay Threshold Points - Earlier, when we characterized the inverter, we decided that a
30% input to 70% output change represents a better propagation delay than a 50% to
50% change. These threshold points are specified as follows.

output_threshold_pct_fall : 30;
input_threshold_pct_fall : 70;
output_threshold_pct_rise : 70;
input_threshold_pct_rise : 30;

Realize that 0% always corresponds to logic ’0’ and 1% always corresponds to logic ’1’.
If not specified the default value is 50%.

• Slew Threshold Points - Similar to delay threshold points, slew threshold points set the
points used for rise and fall time measurements.

slew_lower_threshold_pct_fall : 10;
slew_upper_threshold_pct_fall : 90;
slew_lower_threshold_pct_rise : 10;
slew_upper_threshold_pct_rise : 90;

• Cell Swapping Criteria - Sometimes it is useful to design a library with multiple real-
izations of the same cell. These cells have different names, but their input pins, output
pins and logical functions are the same. For instance, one inverter is designed with mini-
mum transistor sizes and another is designed to drive a high load. The cell footprint
attribute tells the tool the cells are functionally equivalent. It then chooses the cell
based on the functionality that best realizes the circuit. Activate this by specifying the
following attribute.

in_place_swap_mode : match_footprint;

The other option is no swapping.

Default Attributes - These are the default values for the entire cell library. They are in effect
unless specifically overridden in a cell description.

• Fanout - These specify the load on the input pins of a cell and the maximum fanout of
an output pin in terms of a standard 4x inverter load.

default_fanout_load : 1.0;
default_max_fanout : 20.0;
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• Pin Capacitance - Specifies the default capacitance values of every pin.

default_inout_pin_cap : 1.0;
default_input_pin_cap : 1.0;
default_output_pin_cap : 0.0;

• Rise and Fall Resistances - These specify the default resistance values pullup and pull-
down transistor stacks. Calculate them in terms of transition delay (rise or fall time) per
unit load. The cell attributes rise resistance and fall resistance override these
defaults.

default_inout_pin_fall_res : 0.0;
default_output_pin_fall_res : 0.0;
default_inout_pin_rise_res : 0.0;
default_output_pin_rise_res : 0.0;

• Intrinsic Rise and Fall - Default low-to-high and high-to-low propagation delays while
driving no load. The cell attributes intrinsic rise and intrinsic fall override
these default values.

default_intrinsic_rise : 1.0;
default_intrinsic_fall : 1.0;

• Slope Sensitivity Factor - Accounts for the delay caused by the ramp nature of input
signals.

default_slope_rise : 0.0;
default_slope_fall : 0.0;

Scaling Factors for Delay Calculations - The timing library file specifies delay factors with
respect to nominal operating conditions. The actual operating conditions require different
delay factors and calculate them using scaling factors. Our library ignores delay variations
due to changes in operating conditions and therefore sets the scaling factors to zero.

/* process scaling factors */
k_process_pin_cap : 0.0 ;
k_process_intrinsic_fall : 0.0 ;
k_process_intrinsic_rise : 0.0 ;
k_process_hold_fall : 0.0 ;
k_process_hold_rise : 0.0 ;
k_process_setup_fall : 0.0 ;
k_process_setup_rise : 0.0 ;

/* temperature scaling factors */
k_temp_pin_cap : 0.0 ;
k_temp_intrinsic_fall : 0.0 ;
k_temp_intrinsic_rise : 0.0 ;
k_temp_hold_fall : 0.0 ;
k_temp_hold_rise : 0.0 ;
k_temp_setup_fall : 0.0 ;
k_temp_setup_rise : 0.0 ;

10



/* voltage scaling factors */
k_volt_pin_cap : 0.0 ;
k_volt_intrinsic_fall : 0.0 ;
k_volt_intrinsic_rise : 0.0 ;
k_volt_hold_fall : 0.0 ;
k_volt_hold_rise : 0.0 ;
k_volt_setup_fall : 0.0 ;
k_volt_setup_rise : 0.0 ;

Cell Definitions - This section compromises the main section of the technology library file. It
describes individual cells in the library and each cell has its own section. An inverter cell
section uses the following framework.

/* inverter cell */
cell(INV) {
:
:

}

Each cell describes cell level simple attributes and pin groups with specific timing information.

• Cell Level Simple Attributes - The area attribute specifies cell area in no specific
rigid units. For consistency, specify the area as the length and width of the non-
overlapping section of a standard cell. Measure from the origin to the center of the
metal1-substrate via directly above it for cell height (54 micros for a standard cell)
and measure width as the distance between the origin and the center of the rightmost
via (10.2 microns).

area : 550.8;

As discussed earlier in Cell Swapping Criteria, cells with identical pin names and func-
tionality but different characteristics are identified by the same value for the cell footprint
attribute. Specify the inverter family by setting cell footprint to inverter.

cell_footprint : "inverter";

• Pins and Pin Level Simple Attributes - The inverter has two pins, A and Y . Pin A sees
the gates of an nmos transistor and a pmos transistor, both of which contribute to its
gate capacitance. We calculated this earlier. Here the capacitance is recorded in terms
of the standard 4x inverter load, which makes a single inverter input’s capacitance 0.25.
The output pin does not internally connect to any transistor gates, therefore it does not
record any pin capacitance. If it did internally connect to a transistor gate then specify
its capacitance similarly to the input pin’s capacitance.

pin(A) {
/* pin level simple attributes */
direction : input;
capacitance : 0.25;

}

pin(Y) {
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/* pin level simple attributes */
direction : output;
:
:

}

• Cell Function - The function attribute defines the logical cell function. We described
it in detail earlier. Each output pin needs a function section, add the following under
the direction attribute.

function : "!A";

• Cell Timing Information - Timing level simple attributes describe timing information
of the output pins in relation to the input pins. Every output pin has a timing section
for every input pin. For the inverter, pin Y has a timing section for pin A. For a nand
gate, the output has a timing section for each input. We already calculated the timing
information for the inverter, record it under the function attribute.

/* timing group for pin A */
timing() {
/* timing level simple attributes */
related_pin : "A";
intrinsic_rise : value;
intrinsic_fall : value;
rise_resistance : value;
fall_resistance : value;

}

Adding Additional Cells - As you characterize more cells for the technology library file, add
them under the inverter. Remember, every cell type has its own cell definition and you do
not need to rewrite the library header information for each cell.

5.3 Compile the File

Save your file as stdCellLib.lib . Now convert the file to the format the synthesis tool, build
gates, expects. Do this by running the syn2tlf tool with stdCellLib.lib as the argument. At
a console prompt type:

> syn2tlf stdCellLib.lib

You should now have a stdCellLib.tlf file in your directory. Congratulations, you are almost through
the tutorial!

6 Creating a Verilog Interface Description

In addition to the technology library file, the tools expect a verilog interface file containing a
separate module for each cell in the library describing the input and output properties of every pin
in the cell. The general file format follows:

module cell1_name (out1, out2, ... , in1, in2, ...);
output out1, out2, ...;
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input in1, in2, ...;
endmodule

module cell2_name (out1, out2, ... , in1, in2, ...);
output out1, out2, ...;
input in1, in2, ...;

endmodule

:
:

module celln_name (out1, out2, ... , in1, in2, ...);
output out1, out2, ...;
input in1, in2, ...;

endmodule

A verilog interface file for the stdCellLib with only one inverter cell looks like this:

module INV ( Y, A );
output Y;
input A;

endmodule

Make a file in your stdCellLib directory called stdCellLib.v. Add the inverter cell to it. As you
add additional cells to your library, make sure to include a module for each in the verilog interface
description.

7 Conclusion

Creating a standard cell, characterizing it, recording all the data in the technology library file and
writing the verilog interface is a long process. Refer to this file often as you create more cells
for your library. Remember that cell library creating simplifies your life later by allowing you to
write your circuits in an HDL and synthesize them without resorting to k-maps, state diagrams,
schematic capture and lots of headaches when you need to redesign.

As always, if you have any trouble or find any errors in this tutorial let the TAs and the professor
know.
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